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In conformity  with sys tems  of two-phase porous cooling, a s tat is t ical  model of boiling of a liq- 
uid in a porous body consist ing of nonintersect ing capi l lar ies  is set  up. 

Methods of heat removal  f rom bodies with internal energy sources ,  based on cooling by a liquid under-  
going a phase t ransformat ion  within a porous wall, have been widely used in recent  t imes.  A number of works 
[1-5] are  devoted to the theoret ical  and experimental  investigation of the hydrodynamics and heat exchange in 
sys tems  of porous two-phase cooling. In the presen t  paper  we const ruct  a s tat is t ical  model of boiling of a liq- 
uid inside a porous s t ruc ture  and on the basis of it we formulate  the problem of hydrodynamics and heat ex- 
change in sys tems  of two-phase porous cooling. In cont ras t  to [1-4], the approach developed in the present  
work allows us to take into account the spread of the phase- t rans i t ion  region within the porous body. An ac -  
count of this fact  can turn out to be significant when analyzing instability of sys tems  of two-phase porous cool- 
ing, this being connected with a sudden change of the position of the phase- t rans i t ion  region, when the external 
conditions a re  al tered.  

T r a n s f e r  E q u a t i o n s  in  a T w o - P h a s e  S y s t e m  

o f  P o r o u s  C o o l i n g  

Let heat sources  be distributed inside a porous body (Fig. 1). To remove the heat produced inside and 
also supplied f rom outside, a liquid heat c a r r i e r  undergoing a phase t ransformat ion is pumped through it. As 
we know [1], stabil i ty of the sys tem of two-phase porous cooling is achieved by the use of a mult i layer  porous 
wail with penetrabil i ty increas ing  in the phase- t rans format ion  zone in the direction of motion of the heat c a r -  
r ier .  Therefore ,  in the following it is a s sumed  that penetrabil i ty of the wall is a function of the coordinate x. 
In the general  ease  the phase- t rans i t ion  region is located somewhere in the depth of the body. Before the s ta r t  
of this region, for x <xl, f i l trat ion of the liquid heat c a r r i e r  takes place. At the section x =x 1 conditions are  
crea ted  for the formation of vapor  bubbles in individual capil laries and for their  subsequent growth. Beginning 
with this location and at the distance A =x 2 - x l ,  a phase transit ion takes place. For  x > x  a a s ingle-phase flow 
of the already gaseous heat c a r r i e r  takes place. 

If we can introduce a single tempera ture  for  the porous matr ix ,  liquid, and vapor located in the pores 
(this is possible if their  t empera tures  are  close to one another), then the densit ies of the flow of mass ,  mo-  
mentum, and energy in the direct ion of the x axis can be represented  in the form 

~m = pvVv § Ptv t, (i) 

--. P-+-%, (2i 
dT 

q = Pvvvhv -i- Pt vl  h t - -  )J - - - -  (3) 
d x  ' 
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Fig. 1 Fig. 2 

Fig. i .  Fi l t ra t ion scheme of a heat c a r r i e r  in two-phase 
porous  cooling sys tem.  

Fig. 2. Flow of a heat  c a r r i e r  in a uniaxial capil lary.  

where ~x is the flow of momentum in the direct ion of the x axis t r ans f e r r ed  as a resu l t  of the motion of the 
heat  c a r r i e r .  With the express ions  (1)-(3) taken into account, the corresponding s ta t ionary  t r ans fe r  equations 
are  wri t ten in the fo rm 

d (9vvv + P t v  t) = O, (4) 
dx 

dp da~ 
- + %, ( 5 )  

dx d x  

" dx [PvWhv -}- 9t  vt h l ] dx d x - -  = r (x), (6) 

where r w is the fr ict ion force  act ing on the heat c a r r i e r  per  unit volume from the side of the porous matr ix;  
r(x} is the density of internal heat sources .  Equations (4)-(6) do not define uniquely all the quantities contained 
by them. To close this sys tem of equations we have to use model representa t ions  of the cha rac te r  of boiling 
of the heat c a r r i e r  in the porous body. 

S t a t i s t i c a l  M o d e l  o f  B o i l i n g  P r o c e s s  o f  L i q u i d  

in a P o r o u s  B o d y  

Le t  a porous body consis t  of a sys tem of identical cylindrical  capi l lar ies  a r ranged paral le l  in the d i rec -  
tion of the x axis. In experiments  concerned with the study of boiling of a liquid in individual capi l lar ies  [6], a 
periodic emergence  of vapor  bubbles cover ing the entire section of capi l lar ies  is discovered.  The bubbles are  
formed on the walls of capi l lar ies  at centers  of vapor  information that exist  there (Fig. 2). They rapidly grew 
as a resul t  of evaporation f rom the menisc i  of liquid located at the ends of the vapor  plug. This plug moves 
along the capi l lary  together with the s t r eam of liquid, but the column of liquid in front of the vapor  plug moves 
considerably  fas te r  as a resul t  of the growth of the plug. According to experiments ,  a simultaneous occur rence  
of severa l  bubbles in the same capi l lary  is unlikely. After  evaporation of the column of liquid in front of the 
vapor  plug activation of a new bubble takes place. The probabil i ty of bubble activation depends on the degree 
of superheating of the liquid and numerous other  factors .  The state of the surface  of the capil lary,  the degree 
of pur i ty  of the liquid, etc. ,  a r e  among such fac tors .  Fo r  the formation of bubbles, the liquid, f i rs t  of all, must  
be superheated, i .e. ,  mus t  have a t empera tu re  higher than the saturation tempera ture  at the given p r e s s u r e  
T0=Tsat(P).i  Let  the liquid be. superheated up to the tempera ture  T. Then spherical  equilibrant bubbles of 
radius 

2o" dTsat (p) (7) 
T - -  To dp 

can exist  in it. Bubbles of smal le r  radius  will decrease ,  while bubbles of l a rger  radius will grow. In other 
words,  centers  of vapor  format ion on the surface  of a capi l lary of radius R > r can be activated, while those 
with a dimension R < r cannot. Let  centers  of vapor  formation per  unit surface of the capi l lary  be distributed 
with r e spec t  to the size with the distribution density n(r). Then we can determine the probabil i ty of activation 
of any center  of vapor  formation with a dimension g rea t e r  than r :  

/ 

�9 0 

where r is given by the express ion (7). The quantity w(r) depends on the superheating T - T O and through it 
also on the coordinate x. Therefore ,  in the following this quantity will be denoted by c0(x). 
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Fig .  3. F low of the hea t  c a r r i e r  in c a p i l l a r i e s  of the 
f i r s t  and second types .  

F ig .  4. Evolut ion of c a p i l l a r i e s  of the f i r s t  type in the 
phase  space.  

Since in the s a m e  c a p i l l a r y  s imul t aneous ly  no m o r e  than a s ingle  bubble can be ac t iva ted ,  a l l  c a p i l l a r i e s  
p a s s i n g  through a unit  sec t ion  of the porous  body a r e  divided into two groups (Fig.  3): those with a vapor  plug 
and those without it .  The c a p i l l a r i e s  of the f i r s t  group can be c h a r a c t e r i z e d  by a t r i p l e t  of numbers :  x 1 - the 
coord ina te  of the f i r s t  men iscus ;  x 2 - the length of the vapor  plug; and x 3 - the length of the l iquid column be-  
hind the plug. The c a p i l l a r i e s  of the second group a re  adequate ly  c h a r a c t e r i z e d  by a s ingle  number  - the co-  
ord ina te  x 1 of the meniscus .  In the space  x l ,  x2, x 3 we int roduce the dens i ty  of c a p i l l a r i e s  N, equal to the num- 
be r  of Cap i l l a r i e s  of the f i r s t  group pa s s ing  through a unit  sec t ion of the spec imen  and having the c h a r a c t e r -  
i s t i c s  xl, x2, x 3. An analogous c h a r a c t e r i s t i c  is  in t roduced for  c a p i l l a r i e s  of the second group N 1. These  quan-  
t i t i e s  depend not only on coord ina tes ,  but can a l so  depend on t ime.  

C a p i l l a r i e s  of one group can be t r a n s f o r m e d  into c a p i l l a r i e s  of the second group as  a r e s u l t  of evapo-  
ra t ion  of the column of l iquid in c a p i l l a r i e s  of type i o r  as  a r e s u l t  of emergence  of a bubble of vapor  in cap i l -  
l a r i e s  of type 2. C a p i l l a r i e s  of type 1 a p p e a r  f rom c a p i l l a r i e s  of type 2 a t  the ins tan t  of occu r r ence  of the 
vapor  plug. F o r  c a p i l l a r i e s  in which this  occu r s  x 2 = 0. Subsequently the p a r a m e t e r s  xl ,  x 2 grow, while x 3 d i -  
min i shes .  When x 3 becomes  equal to zero ,  the c a p i l l a r y  of type 1 i s  t r a n s f o r m e d  into a c a p i l l a r y  of type 2 
(Fig.  4). With the growth of x i the functions N and N 1 mus t  r ap id ly  d e c r e a s e ;  the re fo re ,  we can a s s u m e  that  
the region of va r i a t i on  of the a rguments  is  - ~o < x i < co; x 2 > 0; x 3 > 0. 

The flow in the phase  space  xl ,  x2, x 3 is  defined as  r  N, where  v i is  the ra te  of va r i a t ion  of the co-  
ordinate  x i. Then for  N the balance equation 

ON _}_ E -0~-~0 (v~N) = Q (9) 
.) 

holds,  where  Q is a quanti ty equal to the number  of c a p i l l a r i e s  of the f i r s t  type with the p a r a m e t e r s  xl,  x2, x s 
being fo rmed  p e r  unit  t ime in unit  sec t ion of the spec imen.  The quant i ty  Q(xl, x2, x 3) mus t  be p ropor t iona l  to 
the number  of c a p i l l a r i e s  of the second type with a men i scus  at  the point  x l + x  3. Since c a p i l l a r i e s  of the f i r s t  
type a r i s e  f rom x 2 = 0, we can r e p r e s e n t  Q in the fo rm 

q = k,.o (x~) N~ (x~ + x~) ~ (x~), (lO) 

where  in the coeff ic ient  of p ropo r t i ona l i t y  we have i so la ted  a t e r m  depending on the supe rhea t  of l iquid w(xl). 
Equation (9) is  now wr i t t en  in the fo rm 

ON ~ 0 (11) ~+ + - - .  ~ (v~N) = k(o (x~) ~ (x~ + x+) 6 (x~). 
(D 

Since we a r e  i n t e r e s t e d  in the s t a t iona ry  case ,  for  the de te rmina t ion  of N it  is  suff ic ient  to have the equations 

2o 
(0 ~ (viN) = ko (xl) NI (xl + x~) 6 (x~) (12) 

with the condit ion 

NI~=-o =0. 

The condit ion (13) r e f l e c t s  the fac t  that  c a p i l l a r i e s  of type 1 a r i s e  in the plane xt,  x 3 of the phase  space  xt,  

X29 X 3. 

(13) 
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Capi l l a r i e s  of type 2 a r i s e  f rom cap i l l a r i e s  of. type 1 a t  the ins tant  the liquid column evapora t e s .  They 
vanish  when they a r e  t r a n s f o r m e d  into cap i l l a r i e s  of the f i r s t  type. The balance equation for  N 1 has  the f o r m  

ON1 "iF 0 (Ntv~) = R (x , ) - -  -R (xl), (14) 
o-7- 

where  R(x 1) is  a sou rce  re f lec t ing  the t rans i t ion  of cap i l l a r i e s  of type 1 into cap i l l a r i e s  of type 2; ft(x i) is a 
sou rce  cha rac t e r i z ing  the i nve r se  t rans i t ion;  v '  1 is the r a t e  of  motion of the men i scus  in a cap i l l a ry  of the 
second type. The number  of cap i l l a r i e s  of the second type with a men i scus  at  the point  xl ,  being t r a n s f o r m e d  
into cap i l l a r i e s  of type 1 with any  lengths of the liquid column and a v a p o r  plug, is  given by the express ion  

(15) 
0 

The n u m b e r  of cap i l l a r i e s  of the second type, a r i s i ng  f r o m  cap i l l a r i e s  of the f i r s t  type with any length of 
the plug, is  wr i t t en  in the f o r m  

R (xl) = ~ vaNlx,=o dx v (16) 

With (15), (16) taken into account,  Eq. (14) in the s ta t ionary  ca se  a s s u m e s  the f o r m  

I d_d__. (v~ Ni) ---= vsNIx,=o dx~ - -  ko (xi - -  x3) N1 (x,) dx v (17) 
dxl 

0 0 

Equations (12) and (17) with the condition (13) de t e rmine  the functions N and N 1 under  the addit ional condition 

where  N O is  the ove ra l l  number  of c ap i l l a r i e s  pass ing  through a unit  sect ion of the spec imen .  

T r a n s f e r  E q u a t i o n s  o n  t h e  B a s i s  o f  a S t a t i s t i c a l  

M o d e l  o f  t h e  B o i l i n g  P r o c e s s  in  a C a p i l l a r y ' P o r o u s  B o d y  

On the bas i s  of  the s ta t i s t i ca l  model  of boiling in a porous  body we de te rmine  al l  quant i t ies  enter ing into 
the t r a n s f e r  equations (4)-(6). Le t  the r a t e  of motion of the liquid a t  the en t ry  into a cap i l l a ry  be i 1. F o r  s i m -  
pl if icat ion we shall  a s s u m e  that  i t  is the s ame  for  cap i l l a r i e s  of the f i r s t  and second types and that v 1 = vl ' .  The 
ra t e  of motion of v a p o r  in the v a p o r  plug :v 1 is g r e a t e r  than Ell. In addition, u 2 > vl,  v 2 > u 2. Having wri t ten for  
each  of the men i s c i  the condition of continuity of the flow of m a t e r i a l ,  which, for  example ,  for  the f i r s t  of them 

has  the f o r m  

Pl (ui - -  vi) = O v (v-1 - -  vl) = zl, (19) 

where  T t is the r a t e  of evaporat ion,  r ep resen tab le ,  accord ing  to [7], in the f o r m  

• l /~- (20) = [p (T) - -  p], 
]/-2&-R*T 

by means  of s e v e r a l  a lgeb ra i c  transformations, with the re la t ion  pv<<Pl taken  into account,  we find that 

- '~ % (21) 
Pv~ 

xl T2 (22) u ~ = u ~ +  - - + - - - -  , 
pv, ~,: 

v-2==ul+ zl ~ ~2 .~-za , (23) 

Pv~ Pv: Pw 

% % ~2 + % (24) v~-- + - -  ; v~= 
Pv, Pv~ P l 

v 1 = v~ = u~; 
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We introduce the quant i t ies  nl, n~, n3, n4, equal to the mean  number  of cap i l l a r i e s  p e r  given sect ion of the spec i -  
men  x, r e spec t ive ly ,  with an initial  p a r t  fi l led with liquid, a vapo r  plug, a liquid column behind the vapor  plug, 
and the final p a r t  filled with vapor .  I t  is not difficult  to see  that  these  quant i t ies  a r e  e x p r e s s e d  as  follows in 
t e rns  of the functions N(xl, x2, x 3) and Nl(xl): 

nl (x) = y N x (x,) d x  1 - ~  . IV (xx, x=, xz) dxxdx2dx a, 
x 0 0 x 

(25) 

X - - ~  Yx 

n 4 ( x )=  ~ S i N (Yl, Y 2 -  Y~, Ya - -  Y2)dysdy=dy,. (28) 
--,x, y ,  y_, 

By means  of the quant i t ies  thus introduced we can e x p r e s s  the densi ty of the flow of vapor ,  the densi ty  of the 
flow of liquid, and the total  densi ty  of the m a s s  flow of the hea t  c a r r i e r  as  follows: 

PvVv = s (n~Pv~ + n4pv~), (29) 

t~:z vz = s (n~oz ~ + n~p z ~ ) ,  (3o) 

xrn = s (naPtU 1 + n2Pvff i + nsPt U 2 + naPvV2). (31) 

The densi ty  of the impulse  flow connected with the convective motion of the heat  c a r r i e r  is r ep re sen t ed  in the 
f o r m  

r --= s (n~9 z u~ -[- ne9~  + nap z u~ -{- n,PvV~). (32) 

If for  h '  the addit ive law of compounding t h e r m a l  conductivi t ies  is t rue,  then we can wri te  

4 

Z'=- )ws (n= q- n,)-Jr- s  -or- na) + Zp.m (1-- ~ n , ) .  (33) 
i = l  

It  r ema ins  for  us to de te rmine  the f r ic t ion  fo rce  acting on the heat  c a r r i e r  in a unit vo lume of the porous  
body. F o r  this we introduce the quant i t ies  Tel  , r~2, %c3, r~, 4 equal to the f r ic t ion force  act ing f r o m  the side 

of unit su r face  of the cap i l l a ry  on the heat  c a r r i e r  in the given sect ion x, dependent on which side of the cap i l -  
l a ry  fal ls  onto the given section.  Then i t  is obvious that  

T ~  = a ( n i T ( 0  , -[- FI2Toj ~ "~  rtaTo, S "~ l l4"~,  ). (34) 

The quantity %0i is expressed in terms of the coefficient of friction [8] 

= . 8 ~  , (35)  
pv 2 

being a function of tim number  Re of the flow of liquid moving along the capi l lary ,  ~ =~(Re). In the case of 
l amina r  flow this function has the f o r m  

32 uR 
~--- , Re--  

Re v 

From (35) we obtain 

%" = 8 ~ (Re0, Rq = 

Analogous exp res s ions  can be wr i t ten  for  r~2 , rwa , rw4. 

Thus,  equations of motion a r e  closed in the f r a m e w o r k  of the model  of boiling in a c ap i l l a ry -po rous  
body formula ted  above. Concluding, we note that  the theory  developed he re  is val id a lso  for  a porous  body 
consis t ing of identical  cap i l l a r i e s  of va r i ab l e  sect ion,  s imulat ing a s table  s y s t e m  of two-phase  porous  cooling 
with pene t rab i l i ty  i nc reas ing  in the d i rec t ion of motion of the heat  c a r r i e r .  
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N O T A T I O N  

p, density;  v, veloci ty;  p, p r e s s u r e ;  T,  t empe ra tu r e ;  T, densi ty of the m a s s  flow; Z, densi ty  of impulse  flow; q, 
densi ty  of heat flow; h, entha!py; k ' ,  effect ive coeff icient  of t h e r m a l  conductivity; a ,  surface- tension~ coef f ic ien t ;  vl,  
v2, v3, r a t e s  of change of the coordina tes  xi, x2, x3, r e spec t ive ly ;  ui, u 2, ave r age  ve loc i t ies  of liquid in front  of the 
f i r s t  men i scus  and column of liquid, r e spec t ive ly ;  vl ,  v~, ve loc i t ies  of v a p o r  in the v a p o r  plug and a t  the exi t  
f r o m  the capi l la ry ;  ~, condensat ion coefficient;  p ,  m o l e c u l a r  weight; R*, un ive r sa l  gas constant;  P(T), sa tu -  
r a ted  v a p o r  p r e s s u r e  at  the t e m p e r a t u r e  T; kv, kl, Xp.m, coeff ic ients  of t he rma l  conductivity of vapor ,  liquid, 
and m a t e r i a l  of the porous  mat r ix .  
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COMBINED MEASUREMENT 

OF FLUIDS 

V .  S. B a t a l o v  

OF THERMAL PROPERTIES 

UDC 536.2.023 

A d i l a tomet r i e  method for  s imul taneous  de te rmina t ion  of the heat  capaci ty  and the coefficient  
of t h e r m a l  expansion of fluids is descr ibed .  

Rapid d i l a tomet r i c  methods for  the de te rmina t ion  of the t he rma l  diffusivity of m a t e r i a l s  [1], which have 
demons t r a t ed  undisputed advantages  in the study of h e a t - t r a n s f e r  p a r a m e t e r s  [2], can be used as  a means  for  
combined m e a s u r e m e n t  of the p r o p e r t i e s  of t he rma l  expansion and heat  capaci ty  in fluids [3]. 

Among the pr inc ipa l  p roposa l s  for  such an expansion in the a r e a  of applicat ion of d i l a tomet ry  (while p r e -  
se rv ing  such impor tan t  qual i t ies  as  the nondest ruct ive  and highly accura t e  nature of the method,  which is not 
based on m e a s u r e m e n t  of t e m p e r a t u r e s  and t he rma l  fluxes in t e s t  objects) ,  one should cons ider  the c o m p a r a -  
t ive ve r s ion  involving t h e r m a l  change in the volume of two fluids - a s tandard  (with known va lues  for  the volu-  
m e t r i c  heat  capac i ty  c 0 and for. the coeff icient  of t he rma l  expansion/30) and a t es t  fluid (the the rmophys iea l  
c h a r a c t e r i s t i c s  c T and fliT of which a r e  subjec t  to determinat ion)  - under  conditions where  the var ia t ion  of heat  
content in each of them occur s  only because of heat  exchange through a boundary separa t ing  the fluids (a thin 
nondeformable  shell). 

As a specif ic  model  for  the rea l iza t ion  of the method,  it is convenient  to se l ec t  a s y s t e m  of two , ' im-  
bedded" thin-wal led meta l  v e s s e l s  made of a m a t e r i a l  with a negligibly smal l  coeff icient  of t he rma l  expansion 
in compar i son  with the s ame  p a r a m e t e r  for the fluids. The fluid with s tandard  p r o p e r t i e s  fil ls the outer  v e s -  
sel  1 (Fig. 1) in such a way that  the inner  v e s s e l  3 is comple te ly  i m m e r s e d  in the s tandard  fluid, which is in 
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